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Introduction

Importance of Energy Derivatives

Many important equilibrium properties are derivatives of the
(free) energy.

@ Forces, pressure, magnetization, polarization

@ Bulk modulus, compressibility, elastic constants



Introduction

Importance of Energy Derivatives

Global Energetics Energy derivatives help us:

= Actual BO Energy
= DFT BO Energy

1 @ Find local minima in
the BO energy surface

e Structural optimization
e Structure searching

o Describe the shape of
the local minima.

e Phonons
o Elastic properties

BO Energy
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Routine DFT Applications

The following are common DFT applications which have very little
competition from QMC.

@ Structural Optimization

e Atomic positions and box geometries are chosen to minimize
enthalpy.
e Ab initio random structure searching.

@ Phonon Spectra
e Frozen-phonon technique.

© Quantum Molecular Dynamics

Prohibitively expensive in QMC because we don't usually have
access to forces or stresses.
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When Isn't DFT Enough?
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1 Phys. Rev. B 89, 184106 (2014); doi:10.1103/PhysRevB.89.184106
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Definitions

We will focus on energy derivatives w.r.t. structural deformations.

Fo = —Vo.E({R}) (1)

Consider an infinitesimal isotropic deformation ¥ = (I + €)r

1 OE
Uaﬁ__ﬁﬁeaﬁ (2)




Finite Differencing

Energy Derivatives: General Problem

Finite-Differences

@ We only know energy up
se to some error.

AE

@ Causes a trade-off
between statistical and
systematic error.

A




Finite Differencing

Finite Differencing Methods

2-point Finite Difference Formula

£_E()\+A)—E()\)+O(A2) 3

dx A
If there is statistical uncertainty in E, then

Var [Z/ﬂ = L{ Var[EQ\+A)] +Var[E(N)]  (4)

—2Cov[E(A+A) | E(N)] }

Notes:
@ There is a trade-off between statistical and systematic error.
e Improve efficiency by maximizing Cov [E(A + A) | E(N)]



Finite Differencing

Correlated Sampling with VMC

Consider systems A and B, described by hamiltonians Aa and Ap.
Non-Correlated Sampling:

st (1 fet)- (i [42)

@ Run two independent VMC simulations for the systems A & B.
@ Calculate E4 and Eg in post processing.
o As \UA — WB, Var [AEAB] — 2Var [EA]



Finite Differencing

Correlated Sampling with VMC

Correlated Sampling

_ 1 VAN ca YB/N g
a6 = 15 [0 (imel ~nime)  ©

@ Run a single VMC simulation over the distribution 1

e Chosen to minimize Var [AEg]
o "Umbrella sampling”: Tl = \Uf‘ 4 \|12B
o “Space-Warp! "

o As \UA — WB, Var [AEAB] — 0!

1PRB 61, 16291 (2000); doi: 10.1103/PhysRevB.61.R16291



Finite Differencing

Advantages
e It's a very general technique (keep it in your bag of tricks)

e Works rigorously with VMC and RMC (and DMC with
approximations)

Disadvantages
@ Need a different trial wavefunction for each perturbation.

@ Need a minimum of 7 trial wavefunctions for stresses, and
3N+1 for forces.
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Hellmann-Feynman Theorem

If |W) is an eigenstate of M, or if |W) is a variational minimum that
doesn't explicitly depend on A , then:

dE,
e e |w> (7)

0= % we take as our " Hellman-Feynman Estimator”

WARNING:
@ Remember the mean and variance must exist.

@ Subject to “mixed estimator” problem.
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Nielsen & Martin Stress Estimator?

Stress Estimator

N h X / Xk’ d -
Gop = — Z —Vkang + = Z k' Ja (X ) (kak/ V>
k

k oyt Xkk!

@ Advanced feature in QMCPACK
@ Finite variance.
@ Mixed estimator.

o Currently works for all-electron calculations bulk calculations.
Pseudopotentials later.

2PRB 32, 3780 (1985); doi: 10.1103/PhysRevB.32.3780
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Using the Stress Estimator

<hamiltonian name="hO0" type="generic" target="e">

<estimator name="S" type="Force" mode="stress"
source="ion0" target="e"/>

</hamiltonian>

ojj will appear as “S_i_j" in the scalar.dat file.
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Stress Estimator Test

Stress | _QMC (GPa) ||| LDA % Er | PBE % Er | vdW-DF % Er | vdW-DF2 % Er | HSE % Er_|

TXX 76.59 + 0.16 6.31 13.32 21.64 25.43 4.42
ayy 73.79 £ 0.16 6.61 14.24 23.33 27.67 2.98
o77 130.61 + 0.14 -2.05 -2.70 -2.50 -2.64 -3.38
axy 6.14 + 0.12 0.94 -22.47 -45.95 -57.70 9.36
oxz -2.24 £ 0.11 -8.90 26.90 71.54 97.28 -28.97
agyz -2.84 £ 0.11 -40.72 -45.11 -51.22 -54.65 -0.64

@ Tested on a pure hydrogen system with N, = 54 and a density
of rg = 1.60.

@ QMC stresses are finite-size corrected and extrapolated to
reduce mixed-estimator bias.

@ DFT errors with stresses are consistent with previous
benchmarking studies.
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Hellmann-Feynman Forces

We can try to evaluate the following estimator in QMC:
Fo = — Vi, V(7). {R}) (8)

Problem: Estimator has a well defined mean, but infinite variance
for 1/r potentials.

4

(Fy=-Z /err dp(r) (9)

(F2) = 72 /r2dr dQ p(r)% (10)
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Ceperley-Chiesa-Zhang Estimator®

Eliminates divergence of the Hellmann-Feynman estimator by
filtering out s-wave component of the force-density. How is this
done?

First, create a sphere of radius R around ion.

(Fz)=F2 + —z/ dro(r) > (11)

n

Define a force density as follows:

f(r) = _Z/de(r,O,gb) cos(0) (12)

3PRL 94, 036404 (2005); doi: 10.1103/PhysRevLett.94.036404
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Ceperley-Chiesa-Zhang Estimator

Physically, f;(r) — 0 linearly as r — 0.

£(r) = 27 / dQp(r. 0, 6) cos(0) (13)

Given the general expansion of f;(r) in spherical harmonics:

) 0 9]
B(N=-2) > rzf,f,/dQYﬁm(G,gb) =-Z> ar’ (14)
/=0

{=0 m=—¢

If we set the ¢ = 0 term to zero, we filter out the s-wave
component.
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Chiesa-Ceperley-Zhang Estimator

_ k
=% ° g(r) =2 "k—g akr
. T @ On physical grounds, we
LR can fix g(r) to cancel off
Fo=g(r)% divergence.

@ Not zero-variance, not
zero-bias, but
systematically improvable.

@ Choose m, n, and R to
minimize variance and
bias.




Using the Force Estimator

<hamiltonian name="hO0" type="generic" target="e">

<estimator name="F" type="Force" mode="cep">
<parameter name="rcut">1.0</parameter>
<parameter name="nbasis">4</parameter>
<parameter name="weightexp">2</parameter>
</estimator>

</hamiltonian>

ojj will appear as “F_i_j" in the scalar.dat file.

Estimators
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Chiesa-Ceperley-Zhang: Open Boundary Conditions

a=4.0bohr

o o o o

b=12bohr

@ DMC finite-difference forces used as reference.
o Tested Chiesa-Ceperley-Zhang Estimator (R = 0.4,n = 5)
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Force Estimator Tests: Results

Force Estimator Comparison

o All QMC Chiesa T
estimates 130 =
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_| Fo-onc
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Chiesa-Ceperley-Zhang: Bulk Calculations

This framework also works for bulk calculations! Tested on solid
and liquid H systems, as well as H+He mixtures.

@ Uses the “optimized breakup” method of to handle the
long-range force contributions.

@ S-wave filtering on the short-range component of the force.
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Chiesa-Ceperley-Zhang: Bulk Calculations
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o Pure liquid hydrogen system. N, = 54, rs = 1.60.
@ Benchmarking application. Force errors relative to QMC and
HSE respectively.
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Chiesa-Ceperley-Zhang: Summary

Advantages
@ It's simple (two parameters in the input file).
@ It's accurate (much better than 1%).
o lIt's efficient for light elements.
Disadvantages
@ It's a mixed estimator.
@ Error bar scales like Z3 with atomic number.

@ Estimator is not zero-variance.
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Zero-Variance Zero-Bias Forces: Introduction

Consider the local energy estimator, E;(R) = ’LWTT It has the

following desirable properties:

© Zero-variance property:

e Var [E/_] —0as Vi — Pg.
@ Zero-bias property:

° <EL>“U2T — EQ as Vi — q)o

Can we make other estimators that behave like this?
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Assaraf-Caffarel ZVZB Estimator®

d{H)w dH  (H—E )V V)
={ 7 2(E; — (Ep))—
X X v, T AE D))
Wby
(15)
Ingredients:
© Bare Hellman-Feynman estimator: %

@ Zero-variance term: w
e Cancels divergences in %
o Reduces statistical noise.

© Zero-bias term: 2(E. — (EL))w>
@ Trial wavefunction W1 and trial wavefunction derivative W)

4J. Chem. Phys. 119, 10536 (2003); doi: 10.1063/1.1621615
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/ZV/ZB Advantages

As \UT — (bo and \U)\ — (D/\,
@ Variance goes to 0
. dE
e Estimator approaches the true 3
Advantages over Chiesa-Ceperley-Zhang:

o Efficiency tied to quality of trial wavefunctions, not underlying
estimator or distribution.

o Errors might scale much better than Z3.



Estimators

/ZV/ZB Disadvantages

N df,'\/ (I:/—E[_)W)\ \U,\
= — 4+ —=+2(E, — (E1))— 16
O=—++ v, * (EL — L>)WT (16)

@ Complexity
e Need machinery to store, evaluate, and optimize trial
wavefunction derivatives.
e Fixed-node calculations require special techniques to handle
nodal divergence.
@ What is a good trial wavefunction derivative?
o Delicate treatment of nodal divergences needed.
o What about core electrons?
© What's the best way to optimize this estimator?

e Explore cost functions
e Simultaneous optimization of many estimators.
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Current Research

@ Sandro Sorella

e Quantum Molecular Dynamics in Hydrogen.
PRL 100, 114501 (2008); doi: 10.1103/PhysRevLett.100.114501
Nat. Comm. 5, 3487 (2014); doi: 10.1038/ncomms4487

o Algorithmic Differentiation:
J. Chem. Phys. 133, 234111 (2010); doi: 10.1063/1.3516208

o Assaraf-Caffarel estimator with VMC and DMC.

J. Chem. Phys. 119, 10536 (2003); doi: 10.1063/1.1621615

@ Poole, Foulkes, Spencer, Haynes:

e Algorithmic differentiation and molecular dynamics in DMC.
APS March Meeting 2014 http://meetings.aps.org/link/BAPS.2014.MAR.527.3
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Current Research

@ Saccani, Filippi, Moroni:

o NEB calculations of molecules using QMC.
J. Chem. Phys. 138, 084109 (2013); doi: 10.1063/1.4792717

e Improved ZV terms.
ES2013 http://es13.wm.edu/talks/Moroni.pdf

e UIUC:

e Benchmarking forces and stresses in H and H+He mixtures.

o Using the Chiesa-Ceperley-Zhang estimator.
PRL 94, 036404 (2005); doi: 10.1103/PhysRevLett.94.036404
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Conclusions

@ Improved estimators make it possible to bring QMC levels of
accuracy to:

e Structural optimization
e Phonon calculations
e Molecular Dynamics & Classical Monte Carlo
o QMCPACK supports stresses and Chiesa-Ceperley-Zhang
estimators in isolated and bulk systems.

@ Research is ongoing to extend this to realizing previously
mentioned applications.

Anyone who is interested in discussions, examples, etc., feel free to
talk to me!
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